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Abstract

This article will demonstrate several methods and techniques which will reduce the complexity 

and cost of designing, modeling, and building finite state machines.  State reduction is the 

elimination of states which are equivalent within the state machine and state assignment is the 

method of assigning a binary value to a state name that will create a reduced logic equation.  The 

three methods examined for state reduction are (1) row matching method, (2) implication chart 

method, and (3) successive partitioning method.  The four methods examined for state 

assignment are (1) binary, (2) gray code, (3) one hot, and (4) enumerated.
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State Reduction and State Assignment Techniques

Introduction

When faced with a design which requires only a small number of inputs and states, an 
engineer won't necessarily concern themselves with cost and labor.  Here, the simplest of 
applications of state machine design can be used.  However, when faced with a complex system 
with many inputs and states, an engineer will be required to keep the costs and labor down to a 
minimum as well as produce a design which is accurate and stable.  In the absence of state 
reduction and state assignment techniques, the engineer would easily be overwhelmed with the 
complexity of designing and building such a system.  In order to cut down on costs and labor, 
there are several methods they can use in both areas of state reduction and state assignment. 

 State reduction is the elimination of states which are equivalent within the state machine 
and state assignment is the method of assigning a binary value to a state name that will create a 
reduced logic equation.  The time most spent in these areas are within the state transition table.  
When the state transition table has been reduced as much as possible, the next step will be to 
decided on how to implement the circuit which is most commonly by way of flip-flops.  The next 
step would be to find the logic equations necessary and then finally, construct the circuit.  It's 
within the last few steps where the true fruit of the state reduction and state assignment 
techniques start to bloom.  Generally, state reduction will occur first, and then state assignment 
following.

The optimal situation would be for example, if a finite state machine drops from 7 states 
to 4 states and compact state assignments are used, the design drops from three flip-flops to two 
flip-flops.  The sub-optimal situation is when the number of states is reduced, but the number of 
flip-flops is not (Grover, 2007).

State Reduction

The three main methods of state reduction include:  row matching, implication charts, and 
successive partitioning.  Row matching, which is the easiest of the three, works well for state 
transition tables which have an obvious next state and output equivalences for each of the present 
states.  This method will generally not give the most simplified state machine available, but its  
ease of use and consistently fair results is a good reason to pursue the method.  The implication 
chart uses a graphical grid to help find any implications or equivalences and is a great systematic 
approach to reducing state machines.  Successive partitioning is almost a cross between row 
matching and implication chart where both a graphical table and equivalent matching is used.  
Each of these methods will, in most cases, reduce a state machine into a smaller number of 
states.  Keep in mind that one method may result in a simpler state machine than another. 
Experience will help in understanding and determining the best method to use in any particular 
situation.  
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Row Matching

The row matching method, as previously described, is the quite possibly the simplest of 
the three methods.  It uses the state equivalence theorem: Si = Sj if and only if for every single 
input X, the outputs are the same and the next states are equivalent (Grover, 2007).  All input 
sequences must be considered, but any information about the internal state of the system can be 
ignored.  When using the theorem, both the output and next state must be considered.  However, 
only single inputs rather than input sequences are considered.  The typical recipe for reducing in 
the row reduction method is (Katz, 1993):

1. Start with the state transition table
2. Identify states with same output behavior
3. If such states transition to the same next state, they are equivalent
4. Combine into a single new renamed state
5. Repeat until no new states are combined 

An example can be seen by observing Table 1 below:

First, notice that S10 and S12 have the same next states as well as the same outputs. 
These two states can be combined and renamed into S10' (the tick mark ' signifies that this state 
has been merged with another and is considered a new, reduced state).  Because S12 no longer 
exists, all instances of S12 will be replaced with S10'.  This will result in Table 2 below:

Table 1: Initial state transition table before any reduction.

Input Sequence Present State
Next State Output
X=0 X=1 X=0 X=1

Reset S0 S1 S2 0 0
0 S1 S3 S4 0 0
1 S2 S5 S6 0 0

00 S3 S7 S8 0 0
01 S4 S9 S10 0 0
10 S5 S11 S12 0 0
11 S6 S13 S14 0 0

000 S7 S0 S0 0 0
001 S8 S0 S0 0 0
010 S9 S0 S0 0 0
011 S10 S0 S0 1 0
100 S11 S0 S0 0 0
101 S12 S0 S0 1 0
110 S13 S0 S0 0 0
111 S14 S0 S0 0 0
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This process is continued until no new states can be combined.  The resulting table can be 
seen below in Table 3:

In this particular example, the number of states was reduced from fifteen (15) to seven (7) 
states.  This literally amounts to a reduction of eight (8) states and the elimination of one flip-
flop for the final design.  

Implication Chart Method

The implication chart method uses a graphical grid of sorts to systematically find 
equivalences among the states.  The implication chart assists in keeping track of any implications 
such as, for example, c-d and e-f are implied pairs for a-b in Table 4 below:

Table 2: S10 and S12 were combined into a single state S10'.

Input Sequence Present State
Next State Output
X=0 X=1 X=0 X=1

Reset S0 S1 S2 0 0
0 S1 S3 S4 0 0
1 S2 S5 S6 0 0

00 S3 S7 S8 0 0
01 S4 S9 S10' 0 0
10 S5 S11 S10' 0 0
11 S6 S13 S14 0 0

000 S7 S0 S0 0 0
001 S8 S0 S0 0 0
010 S9 S0 S0 0 0

011 OR 101 S10' S0 S0 1 0
100 S11 S0 S0 0 0
110 S13 S0 S0 0 0
111 S14 S0 S0 0 0

Table 3: The final reduced state transition table.

Input Sequence Present State
Next State Output
X=0 X=1 X=0 X=1

Reset S0 S1 S2 0 0
0 S1 S3' S4' 0 0
1 S2 S4' S3' 0 0

00 or 11 S3' S7' S7' 0 0
01 or 10 S4' S7' S7' 0 0

Not (011 or 101) S7' S0 S0 0 0
011 OR 101 S10' S0 S0 1 0
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Focusing attention towards a different example, the implication chart method will be 
demonstrated in more detail.  The steps that need to be taken in this method can be summed up 
into a recipe (Grover, 2007):

1. Construct implication chart, one square for each combination of states taken two at a time
2. Square labeled Si, Sj, if outputs differ then the square gets an 'X'.  Otherwise, write down 

implied state pairs for all input combinations
3. Advance through chart top-to-bottom and left-to-right.  If square Si, Sj contains next state 

pair Sm, Sn and that pair labels a square already labeled 'X' then Si, Sj is labeled 'X'
4. Continue executing Step 3 until no new squares are marked with 'X'
5. For each remaining unmarked square Si, Sj, then Si and Sj are equivalent

Consider the following transition table:

The first step is to construct an implication chart which can be seen in Table 6 below:  

Table 4: A state transition table to demonstrate implications.

Present State
Next State Output
X=0 X=1 X=0 X=1

a c f 0 0
b d e 0 0
c h g 0 0
d b g 0 0
e e b 0 1
f f a 0 1
g c g 0 1
h e f 0 0

Table 5: Initial state transition talbe for implication chart  
method reduction.

Input Sequence Present State
Next State Output
X=0 X=1 X=0 X=1

Reset S0 S1 S2 0 0
0 S1 S3 S4 0 0
1 S2 S5 S6 0 0

00 S3 S0 S0 0 0
01 S4 S0 S0 1 0
10 S5 S0 S0 0 0
11 S6 S0 S0 1 0
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Construction of the implication chart also includes filling in the values of the state 
transition table as seen in Table 7 below.  Notice the 'X's where the outputs of the compared 
states are different, this is done in step 2.  In step 3, which is demonstrated in Table 8, will further 
eliminate any states which cannot be implied.

Step 4 is to repeat the processes of step 3 until no more comparisons can be made.  The 
final result is what is left over after this step is completed.  The final implication chart and 
transition table can be seen below in Tables 9 and 10.

Table 6: Building the implication chart for state transition table.

S0

S1 S1

S2 S2

S3 S3

S4 S4

S5 S5

S6 S6

S0 S1 S2 S3 S4 S5 S6 S0 S1 S2 S3 S4 S5

Table 7: Constructing and 
completing the implication chart.

S1

S2

S3

S4

S5

S6

S0 S1 S2 S3 S4 S5

S1-S3 
S2-S4

S1-S5 
S2-S6

S3-S5 
S4-S6

S1-S0 
S2-S0

S5-S0 
S6-S0

S5-S0 
S6-S0

S1-S0 
S2-S0

S3-S0 
S4-S0

S5-S0 
S6-S0

S0-S0 
S0-S0

S0-S0 
S0-S0

Table 8: A second pass which eliminates any 
additional states which cannot be implied.

S1

S2

S3

S4

S5

S6

S0 S1 S2 S3 S4 S5

S1-S3 
S2-S4 S2 and S4 have different I/O 

behavior.

S1-S5 
S2-S6

S3-S5 
S4-S6 This implies that S1 and S0 

cannot be combined.

S1-S0 
S2-S0

S5-S0 
S6-S0

S5-S0 
S6-S0

S1-S0 
S2-S0

S3-S0 
S4-S0

S5-S0 
S6-S0

S0-S0 
S0-S0

S0-S0 
S0-S0
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In this particular example, the implication chart method simplified the state transition table from 
seven (7) states down to five (5) states.

Partitioning Method

As mentioned before, the partitioning method is a sort of hybrid between row matching 
and implication chart in that it uses a visual detection for equivalences as well as a chart to 
organize the process.  Partitioning provides a straightforward procedure for determining 
equivalency for any amount of complexity.  Successive partitioning steps produce smaller 
partitions.  If the next step does not yield any smaller partitions no further steps will yield any 
smaller partitions and, hence, the partitioning process is then complete.  All states that are in the 
same partition after k steps are k equivalent.  All states that are in the same partition when no 
further partitioning can be accomplished are equivalent.  States that are not in the same final  
partition are not equivalent (Whitaker, 2005).

The following state transition table example will be used to demonstrate the partitioning 
method:

Table 9: Final implication table after all steps  
have been completed.

S1

S2
Implies that S1 and S2 are also!

S3

S4

S5

S6

S0 S1 S2 S3 S4 S5

S1-S3 
S2-S4 S3 and S5 are equivalent.                 

S4 and S6 are equivalent.

S1-S5 
S2-S6

S3-S5 
S4-S6

S1-S0 
S2-S0

S5-S0 
S6-S0

S5-S0 
S6-S0

S1-S0 
S2-S0

S3-S0 
S4-S0

S5-S0 
S6-S0

S0-S0 
S0-S0

S0-S0 
S0-S0

Table 10: Final state transition table. 

Input Sequence Present State
Next State Output
X=0 X=1 X=0 X=1

Reset S0 S1' S1' 0 0
0 or 1 S1' S3' S4' 0 0

00 or 10 S3' S0 S0 0 0
01 or 11 S4' S0 S0 1 0

Table 11: Sample transition table

PS
NS Z

00 01 10 11 00 01 10 11
A A H G G 1 0 1 0
B C H G F 1 0 1 0
C A H G A 1 0 1 0
D D D F F 0 0 0 0
E H H F E 1 0 0 0
F H H E F 0 0 0 0
G A H A A 1 0 1 0
H H G H G 1 0 1 0 Table 12: Machine  

table.

00 01 10 11
A A/1 H/0 G/1 G/0
B C/1 H/0 G/1 F/0
C A/1 H/0 G/1 A/0
D D/0 D/0 F/0 F/0
E H/1 H/0 F/0 E/0
F H/0 H/0 E/0 F/0
G A/1 H/0 A/1 A/0
H H/1 G/0 H/1 G/0
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In order to start this reduction method, it is beneficial to convert the transition table into a 
machine table which will make it easier to transfer to the partition table.  This is an optional step,  
but it will save a little time in the long run.  Refer to Table 12.  The rows of this machine table 
are the state names from the transition table.  The columns are the next state conditions. The 
values within the cells are in the form next state/output.  The next step is to transfer the 
information into the partitioning table as seen in Table 13 below:

As illustrated in Table 15, the next step is to find any of the outputs which are the same, and then 
partition them off (or group them into a partition) and record these in the P1 row (which basically 
stands for partition pass 1).  The next step is to replace the outputs with the next state names and 
then determine if any of the states need to be partitioned out.  In order to tell this, if states within 
the column being observed are not within the partition, then it should be partitioned off (as seen 
Table 14).  After repeating this step for all columns and partitions, the final partition table can be 
seen in Table 17.  The composite table with all of these steps combined can be seen in Table 16.

Table 13: Partitioning table.

P0 A B C D E F G H
x1,x2 OUTPUTS

00 1 1 1 0 1 0 1 1
01 0 0 0 0 0 0 0 0
10 1 1 1 0 0 0 1 1
11 0 1 1 0 0 0 1 1

P1

Table 17: Composite  
partition table.

P0 A B C D E F G H
x1,x2 OUTPUTS

00 1 1 1 0 1 0 1 1
01 0 0 0 0 0 0 0 0
10 1 1 1 0 0 0 1 1
11 0 1 1 0 0 0 1 1

P1 A B C G H D F E
00 A C A A H D H
01 H H H H G D H
10 G G G A H F E
11 G H A A G F F

P2 A C G H B D E F
00 A A A H
01 H H H G
10 G G A H
11 G A A G

P2 A C G H B D E F

Table 15: Partition 1.

P0 A B C D E F G H
x1,x2 OUTPUTS

00 1 1 1 0 1 0 1 1
01 0 0 0 0 0 0 0 0
10 1 1 1 0 0 0 1 1
11 0 0 0 0 0 0 0 0

P1 A B C G H D F E

Table 16: Partition 2.

P1 A B C G H D F E
x1,x2

00 A C A A H D H
01 H H H H G D H
10 G G G A H F E
11 G F A A G F F

P2 A C G H B D F E

Table 14: Partition 3  
(Final).

P1 A C G H B D E F
x1,x2

00 A A A H
01 H H H G
10 G G A H
11 G A A G

P3 A C G H B D E F
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From the final step in the partition table, the states left grouped in the partitions are all  
equivalent.  In this case,  the equivalences are as follows:

The final step is to put the results of the successive partitioning method back into either 
the state transition table or the state machine table as seen in Tables 18 and 19 below:

In this particular example, the number of states was reduced from seven (7) states to five 
(5) states.  

Between these three states (row matching, implication charts, and successive 
partitioning), an engineer faced with a complex and challenging state machine can more easily 
and affordably accomplish a circuit without being overwhelmed.  Some methods will result in a 
smaller number of states than others (particularly in the case of row matching verses implication 
chart) so it is beneficial to the engineer to try several methods before deciding upon a single one. 
In the end, using any of the state reduction methods will result in a more cost effective design 
than not using any simplification at all.  The next overall step for an engineer after reducing the 
number of states, is to find a state assignment which will help simplify the finite state machine 
even more.

A' = A = C = G = H F
B' = B
C' = D
D' = E
E' = F

Table 19: Final state  
machine table.

00 01 10 11
A' A'/1 A'/0 A'/1 A'/0
B' A'/1 A'/0 A'/1 E'/0
C' C'/0 C'/0 E'/0 E'/0
D' A'/1 A'/0 E'/0 D'/0
E' A'/0 A'/0 D'/0 E'/0

Table 18: Final state transition  
table.

PS
NS Z

00 01 10 11 00 01 10 11
A' A' A' A' A' 1 0 1 0
B' A' A' A' E' 1 0 1 0
C' C' C' E' E' 0 0 0 0
D' A' A' E' D' 1 0 0 0
E' A' A' D' E' 0 0 0 0
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State Assignment

Binary
The Binary Method for assigning states is a common method to use.   It counts up in 

binary starting from 0 and going up 
assigning each state the next number. 
It will use Log2 bits to assign the 
states.  Binary is a common method 
to use because it is easy to think of 
what the bit code will be for each 
state.  Students often learn binary 
coding as their first encoding 
sequence because of this reason. 
However, it is very inefficient.  There 
are a minimum number of bits used 
to encode the machine, but the 
encoding equations derived for each 
bit are often large and complex. 

The equations derived for 
table 20 is:

Q0+ = (Q0’ * Q1) + (X * Q0’) + (Q0 * Q1’ * X’)
Q1+ = (X’ * Q1’) + (X’ * Q0) + (X * Q0’ * Q1)

Because of this reason, different methods have been created that shorten the glue logic 
needed between the different gates.  The 

Gray Code
Gray code was named after Frank Gray.  In gray code, each successive state differs from 

the previous state by only one bit.  With only one 
bit changing from each state to the next, power 
consumption is reduced from binary code where 
multiple states can change at the same time.  In 
addition,  This allows for a minimum number of 
bits used and an also a small equation for each bit. 
However, the encoding only works if the machine 
transfers from one state to the next in order.  If the 
states do not travel in order, then the gray code 
does not work very well.  The equations for each 
flip-flop are as shown:

A+ = BC’ + AC
B+ = A’C + BC’

Table 20: A state representation of binary code 

S1
00

S2
01

S3
10

S4
11

0

00

0

1

1

1

1

Table 21: A map of an state gray code

S2
001

S3
011

S4
010

S5
110

S6
111

S7
101

S8
100

S1
000
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C+ = A’B’ + AB

One Hot Encoding
One Hot Encoding is an 

encoding sequence that uses as many 
registers as there are states.  With One 
Hot Encoding, only one of the bits are 1 
or “Hot” at any given state.  All the 
other bits are 0.  This makes sure only 
two bits change when moving from one 
state to the next.  With a maximum of 
two bits changing at any given time less 
power is consumed.  In addition, One 
Hot Encoding reduces the logic needed 
to implement each bit.  However, it also 
uses many more logic gates to 
implement the state design.  One Hot is 
often used where there are many states 
that need to be implemented in the design.  Using binary encoding, the complexity of the design 
grows with each bit added.  With One Hot, the number of flip-flops grows with each state added, 
but the complexity of each equation does not.  Because of this, it is more difficult to accidentally 
mess up the logic needed to implement the bits.  K-Maps are not needed for this type of encoding 
either.  Instead, a truth table is created and used to find the equation for each bit.  Using the chart 
above, the following truth table is created:

Input Current State Next State

X Q0 Q1 Q2 Q3 N0 N1 N2 N3

0 0 0 0 1 0 0 1 0

0 0 0 1 0 0 1 0 0

0 0 1 0 0 1 0 0 0

0 1 0 0 0 0 0 1 0

1 0 0 0 1 0 1 0 0

1 0 0 1 0 1 0 0 0

1 0 1 0 0 0 0 0 1

1 1 0 0 0 0 0 0 1

Table 23: The truth table for a One Hot Encoding

Using the standard method, the following equations can be easily derived by looking at the 1 on 
each next state.  For state N0, the 1's are on rows 3 and 6.  By looking at the current states and 

Table 22: One Hot Encoding Map

S1
0001

S2
0010

S3
0100

S4
1000

0

00

0

1

1

1

1
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the inputs on those rows, the equation for N0 is: 
N0 = (X’*Q0’*Q1*Q2’* Q3’) + (X*Q0’*Q1’*Q2*Q3’) 

By using the same method, the equations for the other next states are:
N1 = (X’*Q0’*Q1’*Q2*Q3’) + (X*Q0’*Q1’*Q2’*Q3) 
N2 = (X’*Q0’*Q1’*Q2’*Q3) + (X’*Q0*Q1’*Q2’*Q3’)
N3 = (X*Q0’*Q1*Q2’*Q3’) + (X*Q0*Q1’*Q2’*Q3’) 

Only one of these states are Hot at any given time.  This means if Q0 is 1, then Q1, Q2 and Q3 
are all 0.  Likewise with all bits, if one is a 1, then all others are 0.  Because of this, the equations 
can be reduced to:

N0 = (X’ * Q1) + (X * Q2)  
N1 = (X’ * Q2) + (X * Q3) 
N2 = (X’ * Q3) + (X’ * Q0) 
N3 = (X * Q1) + (X * Q0)

This type of encoding uses more bits to encode the states, but reduces the logic needed to glue 
the bits together.  It is a very common coding to use, especially for many states.

Enumerated
If the engineer only has a limited number of flip-flops and still wants to minimize the 

logic needed to implement the state machine, then the engineer needs to use an enumerated type 
of coding.  Enumerated takes the states and arranges the binary code so the 1's are somewhat 
grouped in the K-Map produced for each flip-flop.  This reduces the logic needed to glue the bits 
together.

The rules of grouping are as follows:

Assign your states according to three things:
1) States that share a common next state.

2) States that share a common ancestor

S1

S2 S3

S1 S2

S3
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3) States that have a common output.

The first task is to create a layout of the different states and where each state goes with each 
given input.  The following is an example of such:

Notice there is no encoding of each state.  This has not been created yet.
Next create the state chart that just tells where each state is going for each combination of inputs:

This chart gives a graphical view of the states and their next state on all inputs.  By using this 
chart and a State Map, similar to a K Map, one can easily organize the states so the next states, 
previous states and outputs line up optimally.

State 1 and 4 have common next states.  States 2 and 1 have common next states.  States 3 and 4 
have common next states and common previous states.  Using these observations, a possible map 
could be:

S2

Z=1

S1

Table 25: State Chart of  
above design

Table 24: State Design

S1

S2

S3

S4

0

00

0

1
1

1

1
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Q0\Q1 0 1

0 S2 S3

1 S1 S4

The States for this map are as follows.

The K Maps for the state assignment are as shown:

The equations for these assignments are:

Q0+ = (X * Q0’) + (X * Q1) + (Q0’ * Q1)
Q1+ = (X’ * Q0’) + (X * Q1’)

This greatly reduces the equations from the binary 
equivalent of:

Q0+ = (Q0’ * Q1) + (X * Q0’) + (Q0 * Q1’ * X’)
Q1+ = (X’ * Q1’) + (X’ * Q0) + (X * Q0’ * Q1)

Enumerated takes a lot more work than the other types of encoding.  However, it reduces the 
logic needed outside of the flip-flops while maintaining a low amount of flip-flops.

Q0+ Q1+

Table 27: The final result of the state design

S1
10

S2
00

S3
01

S4
11

0

00

0

1
1

1

1

Table 26: Resulting  
codes for the states
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Conclusion

It takes more time and money initially to use these methods to reduce the number of 
states and logic to implement these states.  Because of this, when designing a simple logic 
circuit, these methods are not needed.  If a complex design with many states is required however, 
it takes more time and money in the end to not these methods.  When dealing with state machines 
that have many inputs and states, the circuit can become very large and complex.  The more 
complex the circuit, the easier it is to make a mistake in the logic.  Bugs can crepe in easily and 
may not be noticed until it is too late.  By using the methods above to first reduce the states and 
second to assign them to an optimal code, more time and money will be saved designing and 
creating the circuit in the end than to not use these methods in the first place.
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