
State Reduction and Assignment 1

Running head: STATE REDUCTION AND ASSIGNMENT

State Reduction and State Assignment Techniques

Derek Hildreth and Timothy Price
Brigham Young University - Idaho

State Reduction and Assignment 2

Abstract

This article will demonstrate several methods and techniques which will reduce the complexity

and cost of designing, modeling, and building finite state machines. State reduction is the

elimination of states which are equivalent within the state machine and state assignment is the

method of assigning a binary value to a state name that will create a reduced logic equation. The

three methods examined for state reduction are (1) row matching method, (2) implication chart

method, and (3) successive partitioning method. The four methods examined for state

assignment are (1) binary, (2) gray code, (3) one hot, and (4) enumerated.

State Reduction and Assignment 3

State Reduction and State Assignment Techniques

Introduction

When faced with a design which requires only a small number of inputs and states, an
engineer won't necessarily concern themselves with cost and labor. Here, the simplest of
applications of state machine design can be used. However, when faced with a complex system
with many inputs and states, an engineer will be required to keep the costs and labor down to a
minimum as well as produce a design which is accurate and stable. In the absence of state
reduction and state assignment techniques, the engineer would easily be overwhelmed with the
complexity of designing and building such a system. In order to cut down on costs and labor,
there are several methods they can use in both areas of state reduction and state assignment.

 State reduction is the elimination of states which are equivalent within the state machine
and state assignment is the method of assigning a binary value to a state name that will create a
reduced logic equation. The time most spent in these areas are within the state transition table.
When the state transition table has been reduced as much as possible, the next step will be to
decided on how to implement the circuit which is most commonly by way of flip-flops. The next
step would be to find the logic equations necessary and then finally, construct the circuit. It's
within the last few steps where the true fruit of the state reduction and state assignment
techniques start to bloom. Generally, state reduction will occur first, and then state assignment
following.

The optimal situation would be for example, if a finite state machine drops from 7 states
to 4 states and compact state assignments are used, the design drops from three flip-flops to two
flip-flops. The sub-optimal situation is when the number of states is reduced, but the number of
flip-flops is not (Grover, 2007).

State Reduction

The three main methods of state reduction include: row matching, implication charts, and
successive partitioning. Row matching, which is the easiest of the three, works well for state
transition tables which have an obvious next state and output equivalences for each of the present
states. This method will generally not give the most simplified state machine available, but its
ease of use and consistently fair results is a good reason to pursue the method. The implication
chart uses a graphical grid to help find any implications or equivalences and is a great systematic
approach to reducing state machines. Successive partitioning is almost a cross between row
matching and implication chart where both a graphical table and equivalent matching is used.
Each of these methods will, in most cases, reduce a state machine into a smaller number of
states. Keep in mind that one method may result in a simpler state machine than another.
Experience will help in understanding and determining the best method to use in any particular
situation.

State Reduction and Assignment 4

Row Matching

The row matching method, as previously described, is the quite possibly the simplest of
the three methods. It uses the state equivalence theorem: Si = Sj if and only if for every single
input X, the outputs are the same and the next states are equivalent (Grover, 2007). All input
sequences must be considered, but any information about the internal state of the system can be
ignored. When using the theorem, both the output and next state must be considered. However,
only single inputs rather than input sequences are considered. The typical recipe for reducing in
the row reduction method is (Katz, 1993):

1. Start with the state transition table
2. Identify states with same output behavior
3. If such states transition to the same next state, they are equivalent
4. Combine into a single new renamed state
5. Repeat until no new states are combined

An example can be seen by observing Table 1 below:

First, notice that S10 and S12 have the same next states as well as the same outputs.
These two states can be combined and renamed into S10' (the tick mark ' signifies that this state
has been merged with another and is considered a new, reduced state). Because S12 no longer
exists, all instances of S12 will be replaced with S10'. This will result in Table 2 below:

Table 1: Initial state transition table before any reduction.

Input Sequence Present State
Next State Output
X=0 X=1 X=0 X=1

Reset S0 S1 S2 0 0
0 S1 S3 S4 0 0
1 S2 S5 S6 0 0

00 S3 S7 S8 0 0
01 S4 S9 S10 0 0
10 S5 S11 S12 0 0
11 S6 S13 S14 0 0

000 S7 S0 S0 0 0
001 S8 S0 S0 0 0
010 S9 S0 S0 0 0
011 S10 S0 S0 1 0
100 S11 S0 S0 0 0
101 S12 S0 S0 1 0
110 S13 S0 S0 0 0
111 S14 S0 S0 0 0

State Reduction and Assignment 5

This process is continued until no new states can be combined. The resulting table can be
seen below in Table 3:

In this particular example, the number of states was reduced from fifteen (15) to seven (7)
states. This literally amounts to a reduction of eight (8) states and the elimination of one flip-
flop for the final design.

Implication Chart Method

The implication chart method uses a graphical grid of sorts to systematically find
equivalences among the states. The implication chart assists in keeping track of any implications
such as, for example, c-d and e-f are implied pairs for a-b in Table 4 below:

Table 2: S10 and S12 were combined into a single state S10'.

Input Sequence Present State
Next State Output
X=0 X=1 X=0 X=1

Reset S0 S1 S2 0 0
0 S1 S3 S4 0 0
1 S2 S5 S6 0 0

00 S3 S7 S8 0 0
01 S4 S9 S10' 0 0
10 S5 S11 S10' 0 0
11 S6 S13 S14 0 0

000 S7 S0 S0 0 0
001 S8 S0 S0 0 0
010 S9 S0 S0 0 0

011 OR 101 S10' S0 S0 1 0
100 S11 S0 S0 0 0
110 S13 S0 S0 0 0
111 S14 S0 S0 0 0

Table 3: The final reduced state transition table.

Input Sequence Present State
Next State Output
X=0 X=1 X=0 X=1

Reset S0 S1 S2 0 0
0 S1 S3' S4' 0 0
1 S2 S4' S3' 0 0

00 or 11 S3' S7' S7' 0 0
01 or 10 S4' S7' S7' 0 0

Not (011 or 101) S7' S0 S0 0 0
011 OR 101 S10' S0 S0 1 0

State Reduction and Assignment 6

Focusing attention towards a different example, the implication chart method will be
demonstrated in more detail. The steps that need to be taken in this method can be summed up
into a recipe (Grover, 2007):

1. Construct implication chart, one square for each combination of states taken two at a time
2. Square labeled Si, Sj, if outputs differ then the square gets an 'X'. Otherwise, write down

implied state pairs for all input combinations
3. Advance through chart top-to-bottom and left-to-right. If square Si, Sj contains next state

pair Sm, Sn and that pair labels a square already labeled 'X' then Si, Sj is labeled 'X'
4. Continue executing Step 3 until no new squares are marked with 'X'
5. For each remaining unmarked square Si, Sj, then Si and Sj are equivalent

Consider the following transition table:

The first step is to construct an implication chart which can be seen in Table 6 below:

Table 4: A state transition table to demonstrate implications.

Present State
Next State Output
X=0 X=1 X=0 X=1

a c f 0 0
b d e 0 0
c h g 0 0
d b g 0 0
e e b 0 1
f f a 0 1
g c g 0 1
h e f 0 0

Table 5: Initial state transition talbe for implication chart
method reduction.

Input Sequence Present State
Next State Output
X=0 X=1 X=0 X=1

Reset S0 S1 S2 0 0
0 S1 S3 S4 0 0
1 S2 S5 S6 0 0

00 S3 S0 S0 0 0
01 S4 S0 S0 1 0
10 S5 S0 S0 0 0
11 S6 S0 S0 1 0

State Reduction and Assignment 7

Construction of the implication chart also includes filling in the values of the state
transition table as seen in Table 7 below. Notice the 'X's where the outputs of the compared
states are different, this is done in step 2. In step 3, which is demonstrated in Table 8, will further
eliminate any states which cannot be implied.

Step 4 is to repeat the processes of step 3 until no more comparisons can be made. The
final result is what is left over after this step is completed. The final implication chart and
transition table can be seen below in Tables 9 and 10.

Table 6: Building the implication chart for state transition table.

S0

S1 S1

S2 S2

S3 S3

S4 S4

S5 S5

S6 S6

S0 S1 S2 S3 S4 S5 S6 S0 S1 S2 S3 S4 S5

Table 7: Constructing and
completing the implication chart.

S1

S2

S3

S4

S5

S6

S0 S1 S2 S3 S4 S5

S1-S3
S2-S4

S1-S5
S2-S6

S3-S5
S4-S6

S1-S0
S2-S0

S5-S0
S6-S0

S5-S0
S6-S0

S1-S0
S2-S0

S3-S0
S4-S0

S5-S0
S6-S0

S0-S0
S0-S0

S0-S0
S0-S0

Table 8: A second pass which eliminates any
additional states which cannot be implied.

S1

S2

S3

S4

S5

S6

S0 S1 S2 S3 S4 S5

S1-S3
S2-S4 S2 and S4 have different I/O

behavior.

S1-S5
S2-S6

S3-S5
S4-S6 This implies that S1 and S0

cannot be combined.

S1-S0
S2-S0

S5-S0
S6-S0

S5-S0
S6-S0

S1-S0
S2-S0

S3-S0
S4-S0

S5-S0
S6-S0

S0-S0
S0-S0

S0-S0
S0-S0

State Reduction and Assignment 8

In this particular example, the implication chart method simplified the state transition table from
seven (7) states down to five (5) states.

Partitioning Method

As mentioned before, the partitioning method is a sort of hybrid between row matching
and implication chart in that it uses a visual detection for equivalences as well as a chart to
organize the process. Partitioning provides a straightforward procedure for determining
equivalency for any amount of complexity. Successive partitioning steps produce smaller
partitions. If the next step does not yield any smaller partitions no further steps will yield any
smaller partitions and, hence, the partitioning process is then complete. All states that are in the
same partition after k steps are k equivalent. All states that are in the same partition when no
further partitioning can be accomplished are equivalent. States that are not in the same final
partition are not equivalent (Whitaker, 2005).

The following state transition table example will be used to demonstrate the partitioning
method:

Table 9: Final implication table after all steps
have been completed.

S1

S2
Implies that S1 and S2 are also!

S3

S4

S5

S6

S0 S1 S2 S3 S4 S5

S1-S3
S2-S4 S3 and S5 are equivalent.

S4 and S6 are equivalent.

S1-S5
S2-S6

S3-S5
S4-S6

S1-S0
S2-S0

S5-S0
S6-S0

S5-S0
S6-S0

S1-S0
S2-S0

S3-S0
S4-S0

S5-S0
S6-S0

S0-S0
S0-S0

S0-S0
S0-S0

Table 10: Final state transition table.

Input Sequence Present State
Next State Output
X=0 X=1 X=0 X=1

Reset S0 S1' S1' 0 0
0 or 1 S1' S3' S4' 0 0

00 or 10 S3' S0 S0 0 0
01 or 11 S4' S0 S0 1 0

Table 11: Sample transition table

PS
NS Z

00 01 10 11 00 01 10 11
A A H G G 1 0 1 0
B C H G F 1 0 1 0
C A H G A 1 0 1 0
D D D F F 0 0 0 0
E H H F E 1 0 0 0
F H H E F 0 0 0 0
G A H A A 1 0 1 0
H H G H G 1 0 1 0 Table 12: Machine

table.

00 01 10 11
A A/1 H/0 G/1 G/0
B C/1 H/0 G/1 F/0
C A/1 H/0 G/1 A/0
D D/0 D/0 F/0 F/0
E H/1 H/0 F/0 E/0
F H/0 H/0 E/0 F/0
G A/1 H/0 A/1 A/0
H H/1 G/0 H/1 G/0

State Reduction and Assignment 9

In order to start this reduction method, it is beneficial to convert the transition table into a
machine table which will make it easier to transfer to the partition table. This is an optional step,
but it will save a little time in the long run. Refer to Table 12. The rows of this machine table
are the state names from the transition table. The columns are the next state conditions. The
values within the cells are in the form next state/output. The next step is to transfer the
information into the partitioning table as seen in Table 13 below:

As illustrated in Table 15, the next step is to find any of the outputs which are the same, and then
partition them off (or group them into a partition) and record these in the P1 row (which basically
stands for partition pass 1). The next step is to replace the outputs with the next state names and
then determine if any of the states need to be partitioned out. In order to tell this, if states within
the column being observed are not within the partition, then it should be partitioned off (as seen
Table 14). After repeating this step for all columns and partitions, the final partition table can be
seen in Table 17. The composite table with all of these steps combined can be seen in Table 16.

Table 13: Partitioning table.

P0 A B C D E F G H
x1,x2 OUTPUTS

00 1 1 1 0 1 0 1 1
01 0 0 0 0 0 0 0 0
10 1 1 1 0 0 0 1 1
11 0 1 1 0 0 0 1 1

P1

Table 17: Composite
partition table.

P0 A B C D E F G H
x1,x2 OUTPUTS

00 1 1 1 0 1 0 1 1
01 0 0 0 0 0 0 0 0
10 1 1 1 0 0 0 1 1
11 0 1 1 0 0 0 1 1

P1 A B C G H D F E
00 A C A A H D H
01 H H H H G D H
10 G G G A H F E
11 G H A A G F F

P2 A C G H B D E F
00 A A A H
01 H H H G
10 G G A H
11 G A A G

P2 A C G H B D E F

Table 15: Partition 1.

P0 A B C D E F G H
x1,x2 OUTPUTS

00 1 1 1 0 1 0 1 1
01 0 0 0 0 0 0 0 0
10 1 1 1 0 0 0 1 1
11 0 0 0 0 0 0 0 0

P1 A B C G H D F E

Table 16: Partition 2.

P1 A B C G H D F E
x1,x2

00 A C A A H D H
01 H H H H G D H
10 G G G A H F E
11 G F A A G F F

P2 A C G H B D F E

Table 14: Partition 3
(Final).

P1 A C G H B D E F
x1,x2

00 A A A H
01 H H H G
10 G G A H
11 G A A G

P3 A C G H B D E F

State Reduction and Assignment 10

From the final step in the partition table, the states left grouped in the partitions are all
equivalent. In this case, the equivalences are as follows:

The final step is to put the results of the successive partitioning method back into either
the state transition table or the state machine table as seen in Tables 18 and 19 below:

In this particular example, the number of states was reduced from seven (7) states to five
(5) states.

Between these three states (row matching, implication charts, and successive
partitioning), an engineer faced with a complex and challenging state machine can more easily
and affordably accomplish a circuit without being overwhelmed. Some methods will result in a
smaller number of states than others (particularly in the case of row matching verses implication
chart) so it is beneficial to the engineer to try several methods before deciding upon a single one.
In the end, using any of the state reduction methods will result in a more cost effective design
than not using any simplification at all. The next overall step for an engineer after reducing the
number of states, is to find a state assignment which will help simplify the finite state machine
even more.

A' = A = C = G = H F
B' = B
C' = D
D' = E
E' = F

Table 19: Final state
machine table.

00 01 10 11
A' A'/1 A'/0 A'/1 A'/0
B' A'/1 A'/0 A'/1 E'/0
C' C'/0 C'/0 E'/0 E'/0
D' A'/1 A'/0 E'/0 D'/0
E' A'/0 A'/0 D'/0 E'/0

Table 18: Final state transition
table.

PS
NS Z

00 01 10 11 00 01 10 11
A' A' A' A' A' 1 0 1 0
B' A' A' A' E' 1 0 1 0
C' C' C' E' E' 0 0 0 0
D' A' A' E' D' 1 0 0 0
E' A' A' D' E' 0 0 0 0

State Reduction and Assignment 11

State Assignment

Binary
The Binary Method for assigning states is a common method to use. It counts up in

binary starting from 0 and going up
assigning each state the next number.
It will use Log2 bits to assign the
states. Binary is a common method
to use because it is easy to think of
what the bit code will be for each
state. Students often learn binary
coding as their first encoding
sequence because of this reason.
However, it is very inefficient. There
are a minimum number of bits used
to encode the machine, but the
encoding equations derived for each
bit are often large and complex.

The equations derived for
table 20 is:

Q0+ = (Q0’ * Q1) + (X * Q0’) + (Q0 * Q1’ * X’)
Q1+ = (X’ * Q1’) + (X’ * Q0) + (X * Q0’ * Q1)

Because of this reason, different methods have been created that shorten the glue logic
needed between the different gates. The

Gray Code
Gray code was named after Frank Gray. In gray code, each successive state differs from

the previous state by only one bit. With only one
bit changing from each state to the next, power
consumption is reduced from binary code where
multiple states can change at the same time. In
addition, This allows for a minimum number of
bits used and an also a small equation for each bit.
However, the encoding only works if the machine
transfers from one state to the next in order. If the
states do not travel in order, then the gray code
does not work very well. The equations for each
flip-flop are as shown:

A+ = BC’ + AC
B+ = A’C + BC’

Table 20: A state representation of binary code

S1
00

S2
01

S3
10

S4
11

0

00

0

1

1

1

1

Table 21: A map of an state gray code

S2
001

S3
011

S4
010

S5
110

S6
111

S7
101

S8
100

S1
000

State Reduction and Assignment 12

C+ = A’B’ + AB

One Hot Encoding
One Hot Encoding is an

encoding sequence that uses as many
registers as there are states. With One
Hot Encoding, only one of the bits are 1
or “Hot” at any given state. All the
other bits are 0. This makes sure only
two bits change when moving from one
state to the next. With a maximum of
two bits changing at any given time less
power is consumed. In addition, One
Hot Encoding reduces the logic needed
to implement each bit. However, it also
uses many more logic gates to
implement the state design. One Hot is
often used where there are many states
that need to be implemented in the design. Using binary encoding, the complexity of the design
grows with each bit added. With One Hot, the number of flip-flops grows with each state added,
but the complexity of each equation does not. Because of this, it is more difficult to accidentally
mess up the logic needed to implement the bits. K-Maps are not needed for this type of encoding
either. Instead, a truth table is created and used to find the equation for each bit. Using the chart
above, the following truth table is created:

Input Current State Next State

X Q0 Q1 Q2 Q3 N0 N1 N2 N3

0 0 0 0 1 0 0 1 0

0 0 0 1 0 0 1 0 0

0 0 1 0 0 1 0 0 0

0 1 0 0 0 0 0 1 0

1 0 0 0 1 0 1 0 0

1 0 0 1 0 1 0 0 0

1 0 1 0 0 0 0 0 1

1 1 0 0 0 0 0 0 1

Table 23: The truth table for a One Hot Encoding

Using the standard method, the following equations can be easily derived by looking at the 1 on
each next state. For state N0, the 1's are on rows 3 and 6. By looking at the current states and

Table 22: One Hot Encoding Map

S1
0001

S2
0010

S3
0100

S4
1000

0

00

0

1

1

1

1

State Reduction and Assignment 13

the inputs on those rows, the equation for N0 is:
N0 = (X’*Q0’*Q1*Q2’* Q3’) + (X*Q0’*Q1’*Q2*Q3’)

By using the same method, the equations for the other next states are:
N1 = (X’*Q0’*Q1’*Q2*Q3’) + (X*Q0’*Q1’*Q2’*Q3)
N2 = (X’*Q0’*Q1’*Q2’*Q3) + (X’*Q0*Q1’*Q2’*Q3’)
N3 = (X*Q0’*Q1*Q2’*Q3’) + (X*Q0*Q1’*Q2’*Q3’)

Only one of these states are Hot at any given time. This means if Q0 is 1, then Q1, Q2 and Q3
are all 0. Likewise with all bits, if one is a 1, then all others are 0. Because of this, the equations
can be reduced to:

N0 = (X’ * Q1) + (X * Q2)
N1 = (X’ * Q2) + (X * Q3)
N2 = (X’ * Q3) + (X’ * Q0)
N3 = (X * Q1) + (X * Q0)

This type of encoding uses more bits to encode the states, but reduces the logic needed to glue
the bits together. It is a very common coding to use, especially for many states.

Enumerated
If the engineer only has a limited number of flip-flops and still wants to minimize the

logic needed to implement the state machine, then the engineer needs to use an enumerated type
of coding. Enumerated takes the states and arranges the binary code so the 1's are somewhat
grouped in the K-Map produced for each flip-flop. This reduces the logic needed to glue the bits
together.

The rules of grouping are as follows:

Assign your states according to three things:
1) States that share a common next state.

2) States that share a common ancestor

S1

S2 S3

S1 S2

S3

State Reduction and Assignment 14

3) States that have a common output.

The first task is to create a layout of the different states and where each state goes with each
given input. The following is an example of such:

Notice there is no encoding of each state. This has not been created yet.
Next create the state chart that just tells where each state is going for each combination of inputs:

This chart gives a graphical view of the states and their next state on all inputs. By using this
chart and a State Map, similar to a K Map, one can easily organize the states so the next states,
previous states and outputs line up optimally.

State 1 and 4 have common next states. States 2 and 1 have common next states. States 3 and 4
have common next states and common previous states. Using these observations, a possible map
could be:

S2

Z=1

S1

Table 25: State Chart of
above design

Table 24: State Design

S1

S2

S3

S4

0

00

0

1
1

1

1

State Reduction and Assignment 15

Q0\Q1 0 1

0 S2 S3

1 S1 S4

The States for this map are as follows.

The K Maps for the state assignment are as shown:

The equations for these assignments are:

Q0+ = (X * Q0’) + (X * Q1) + (Q0’ * Q1)
Q1+ = (X’ * Q0’) + (X * Q1’)

This greatly reduces the equations from the binary
equivalent of:

Q0+ = (Q0’ * Q1) + (X * Q0’) + (Q0 * Q1’ * X’)
Q1+ = (X’ * Q1’) + (X’ * Q0) + (X * Q0’ * Q1)

Enumerated takes a lot more work than the other types of encoding. However, it reduces the
logic needed outside of the flip-flops while maintaining a low amount of flip-flops.

Q0+ Q1+

Table 27: The final result of the state design

S1
10

S2
00

S3
01

S4
11

0

00

0

1
1

1

1

Table 26: Resulting
codes for the states

State Reduction and Assignment 16

Conclusion

It takes more time and money initially to use these methods to reduce the number of
states and logic to implement these states. Because of this, when designing a simple logic
circuit, these methods are not needed. If a complex design with many states is required however,
it takes more time and money in the end to not these methods. When dealing with state machines
that have many inputs and states, the circuit can become very large and complex. The more
complex the circuit, the easier it is to make a mistake in the logic. Bugs can crepe in easily and
may not be noticed until it is too late. By using the methods above to first reduce the states and
second to assign them to an optimal code, more time and money will be saved designing and
creating the circuit in the end than to not use these methods in the first place.

State Reduction and Assignment 17

References

Encoding State Machines. Retrieved May 11, 2009, from xilinx web site:
http://www.xilinx.com/itp/xilinx4/data/docs/sim/vtex9.htm.

Gray code. Retrieved May 12, 2009, from wikipedia web site:
http://en.wikipedia.org/wiki/Gray_code.

Grover, J. (2007). Chapter 15 – State Reduction and State Assignment. Retrieved May 12, 2009,
from Uakron Engineering Web Site: engineering.uakron.edu/grover/web/ee263/handouts/
Chapter%2015.pdf

Katz, R. (1993). Chapter 9: Finite State Machine Optimization. Retrieved May 11, 2009, from
Berkeley Institute Web Site: inst.eecs.berkeley.edu/~cs150/sp00/classnotes/katz-ch9-
mod.pdf

One hot encoding for state machines. Retrieved May 11, 2009, from:
http://asics.chuckbenz.com/detailed_one_hot.htm.

Whitaker, J. (2005). The Electronics Handbook 2nd Edition. In Partitioning (pp. 73-74). CRC
Press.

http://asics.chuckbenz.com/detailed_one_hot.htm
http://www.xilinx.com/itp/xilinx4/data/docs/sim/vtex9.htm
http://en.wikipedia.org/wiki/Gray_code

